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ABSTRACT

The restricted Euler equation captures many important features of the behavior of the velocity

gradient tensor observed in direct numerical simulations (DNS) of isotropic turbulence. However,

in slightly more complex flows the agreement is not good, especially in regions of low dissipation.

In this paper, it is demonstrated that the Reynolds-averaged restricted Euler equation violates the

balance of mean momentum for virtually all homogeneous turbulent flows with only two major

exceptions: isotropic and homogeneously-sheared turbulence. A new model equation which over-

comes this shortcoming and is more widely applicable is suggested. This model is derived from the

Navier-Stokes equation with a restricted Euler type approximation made on the fluctuating velocity

gradient field. Analytical solutions of the proposed modified restricted Euler equation appear to

be difficult to obtain. Hence, a strategy for numerically calculating the velocity gradient tensor is

developed. Preliminary calculations tend to indicate that the modified restricted Euler equation

captures many important aspects of the behavior of the fluctuating velocity gradients in anisotropic

homogeneous turbulence.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1 Introduction

More detailed knowledge of the behavior of the velocity gradient tensor is crucial for a better

understanding of turbulent flows (e.g., vortex stretching which affects the energy cascade). Recently,

an examination of direct numerical simulation (DNS) data bases has revealed certain universalities

in the geometry of the velocity gradient tensor in simple flows as well as in high dissipation regions

of more complex flows (see Ashurst et al [1]). Two important features are frequently observed

concerning the geometry of the velocity gradient tensor: (i) the intermediate eigenvalue of the

strain rate tensor is often small in magnitude and positive in sign; and (ii) the vorticity vector

is aligned along this intermediate eigenvector. A simple dynamical model derived from the Euler

equation - commonly called the restricted Euler equation - reproduces this apparently universal

behavior of the velocity gradients. The restricted Euler equation was first formulated by Vieillefosse

[2], [3] and an approximate asymptotic solution was given therein. Cantwell [4] solved the restricted

Euler equation analytically and made close comparisons between the solutions and DNS data bases

for isotropic and homogeneously sheared turbulence with excellent agreement. However, when the

restricted Euler equation is compared against DNS data bases for more complex turbulent flows

the agreement is not as good, especially in regions of moderate to low dissipation (Cantwell [5]).

While the restricted Euler equation has already provided valuable insight into the velocity gra-

dient geometry, there is still the need for further improvement, especially in complex flows. The

objective of this paper is to improve upon the restricted Euler equation and extend its range of

validity to cases more complex than isotropic turbulence. We first identify one possible reason for

the inaccuracy of the restricted Euler equation in simulating flows with non-zero mean velocity

gradients. It will be shown in Section 2 that the Reynolds-averaged restricted Euler equation vio-

lates the balance of mean momentum for virtually all homogeneous turbulent flows except isotropic

and homogeneously sheared turbulence. It is for these two simple types of turbulence that the

restricted Euler equation has yielded the best agreement (Ashurst et al [1], Cantwell [4]). After

carefully demonstrating this shortcoming of the restricted Euler equation, we will then proceed, in

Section 3, to develop a modified version of the restricted Euler equation which satisfies the mean

momentum equation for general turbulent flows and, hence, is better capable of simulating more

complex test cases. The modified restricted Euler equation is then tested in Section 4 and the

implications for future research are discussed in the Conclusion.

2 Theoretical Background

The Euler equation in terms of the velocity gradients can be written in the form (Vieillefosse [2])

dAq 1
dt + AikAkj - _AmnAnm6ij = Hq, (1)



where

AO - Oxj

[ 0 2P 1 0 2P 6ij]
Hij =- - Ox_xj 3 0XkOXk

d _ 0 0dt - Ot + Uk k'

(2)

given that Uk is the velocity vector and P is the kinematic pressure. VieiIlefosse [2] neglects the

term Hij (the anisotropic pressure Hessian) leading to a simple dynamical system for the velocity

gradients called the restricted Euler equation:

+ A_kAkj - _AmnA,m6,j = 0. (3)dt

Vieillefosse [2] demonstrated that this model leads to a singularity (i.e., a divergence) in finite time

of the velocity gradients. The geometry of the velocity gradients during the divergence obtained

using approximate asymptotic methods revealed two important aspects of the velocity gradient

tensor observed in DNS data: (i) the intermediate strain-rate eigenvector is positive and small; and

(ii) the vorticity vector is aligned along the intermediate eigenvector.

Cantwell [4] obtained an elegant exact solution to the restricted Euler equation and made

close comparisons with DNS data bases for isotropic and homogeneously sheared turbulence. The

agreement was generally good. However, when the model is compared with mixing layer data the

agreement is poor in regions of low dissipation (Cantwell [5]). Although the comparison can be

improved with an ad hoc correction, questions about the validity of the model for more complex

flows continue to persist.

We will now demonstrate that the restricted Euler equation leads to a violation of the bal-

ance of mean momentum for most non-trivial homogeneous turbulent flows. For this purpose, we

decompose the instantaneous fields into mean and fluctuating parts as follows:

= U +u, (4)

P = P+p

Aij = -Ao + aij

OUi Ou,
21___

Oxj Oxj'

where an overbar denotes an ensemble mean. The substitution of equation (4) into the restricted

Euler equation (3), followed by an ensemble average, leads to the result

OAiJot Uk OAOOxk
1

-_ -_ (_) -_ ]_ik_kj + _ -- . (--Amn--Anm "4- arnnanrn)6ij = O. (5)
O



For incompressible homogeneous turbulence with constant mean velocity gradients, we have

OA_j _ OA____A= O,
Ot Oxk

0

OXk = O,
Ou_ Ouk 0 , Ouk

= = O.
Hence, the mean momentum equation implied by the restricted Euler equation (3) reduces to

AikAkj - 1Am, A,,,,6_i = O.

(6)

(7)
m

Isotropic turbulence (for which Aii= 0) and homogeneous shear flow (for which Aii = SSaSj2,

where S is the shear rate) identically satisfy equation (7). However, virtually all other homogeneous

turbulent flows violate the mean momentum equation (7) implied by the restricted Euler equation

which is, therefore, inconsistent with the balance of mean momentum. For example, it is a simple

matter to show that the following basic homogeneous turbulent flows violate equation (7):

Plane Strain

Aij = F(6+16il - 6i2/fj2);

Axisymmetric Expansion/Contraction

1

Ai_ = ±_r(6i1531 + _2_32) T r_3_j3;

Solid Body Rotation

(8)

(9)

Aij = w(Si15j2 - 5i25il); (10)

where F is the strain rate and w is the rotation rate. Of course, each of these basic flows satisfy

the mean Euler equation since, for homogeneous turbulence, the Reynolds-averaged Navier-Stokes

equation reduces to the Reynolds-averaged Euler equation (homogeneity causes the mean viscous

terms to vanish). At the minimum, a viable model of turbulence must satisfy the balance of mean

momentum; in fact, it has been argued that many Reynolds stress models owe the limited success

that they have had exclusively to the fact that they are consistent with the mean balance laws. On

these grounds, we conclude that the restricted Euler equation cannot serve as a viable model for

the analysis of general homogeneous turbulent flows.

3 Modified Restricted Euler Equation

In this Section, we will formulate a modified restricted Euler equation that is consistent with any

mean velocity gradient field. The incompressible Navier-Stokes equation for the instantaneous

velocity field is given by

OU_ _ OUi OP 02Ui (11)



whereu is the kinematic viscosity. By Reynolds averaging equation (11), the equation for the mean

velocity field is obtained:

OUi OU'-i O-P 02-Ui ORik (12)

where P_k -- uiuk is the Reynolds stress tensor (as alluded to earlier, for homogeneous turbulence

the last two terms on the right-hand-side of equation (12) vanish, yielding the Euler equation in

terms of the mean velocity and mean pressure). The equation for the fluctuating velocity field is

obtained by subtracting equation (12) from equation (11):

Ou_ U Oui OUi OP_ Op 02u_
& + - uk--+ + (13)-- Oxk Oxk Oxi u_.

The fluctuating velocity gradient equation is then given by

m
J _
,*ai3 = -- -- _dt + aikakj --aikAkj -- Aikakj uk _

OXk

02 Rik O2p 02 aik

+ OxkOxj OxiOxj + u_. (14)

By contracting equation (14), a Poisson equation for the fluctuating pressure field is obtained:

02p -- -- 02Rlk (15)
OxkOxk alkaki - 2alkAkt + OxzOx---'_"

From the Poisson equation for pressure and equation (14) we get

w

+ aikakj + aikA--kj + A-_kakj + uk OA_j (16)
dt Oxk

-- 02 Rlk 1,_.. :c9_P_ 1 [at_akt + 2alk Akt hij
Oxk Oxj 3 Oxt Oxk Jvs3

where

02p 1 02P 6,j) 02a_-L- (17)
hij -- - ( OziOxj 30x_xk + u Oxk Oxk"

If, in the spirit of the restricted Euler equation, we set hij = 0 in equation (16), we obtain the

general version of our modified restricted Euler equation for fluctuating velocity gradients. Equation

(16) is not very useful for inhomogeneous mean flow fields since its solution requires knowledge of

the fluctuating velocity field which is external to the dynamical system of equations. However, for

homogeneous mean flows, the dynamical system of equations is closed in terms of the fluctuating

velocity gradients: Aij is a constant tensor and the second derivative of the Reynolds stress tensor

vanishes, leading to the tractable form

daij
dt + aikakj + aikAkj + _ikakj 1_(alkakt + aik_kl + "Alkakl)6ij = O. (18)

This can be rewritten as

daij 1
-dr + A,kAk.¢ - A,k_kj - _ (AtkAk_ - AzkTik_)6ij = O. (19)

"'Ill-



For homogeneous turbulent flows with constant mean velocity gradients we have

dAij = daij
dt dt "

Hence, the modified restricted Euler equation for the total velocity gradient is given by

d__ + AikAkj - 1AtkAki_iij = -Aik_kj - 1-Ai_]_:l_Sij.
dt 3 "d

(20)

(21)

A comparison of equations (3) and (21) reveals the difference between the original and the modified

restricted Euler equation. The direct effect of the mean velocity gradient tensor on the total velocity

gradient is retained intact by the present model. Recall that the original model has no explicit

dependence on the mean velocity gradient tensor. The mean velocity gradient terms on the right-

hand-side of equation (21) survive since the mean pressure Hessian is not neglected - a feature that

maintains consistency with the balance of mean momentum. It is a simple matter to show that

the original restricted Euler equation for the velocity gradients is recovered for isotropic turbulence

(Aij = 0) and homogeneous shear flow (Aij = S_il_j2). Due to the presence of the new terms,

equation (21) does not appear to be as easily amenable to the type of analysis performed by

Cantwell [4] on the original equation. Numerical solutions of (21) are also not straightforward due

to the fact that the restricted Euler equation is known to lead to a singularity (divergence of the

velocity gradients) in finite time (Vieillefosse [2], Cantwell [4]). Therefore, from this point onwards,

we concern ourselves only with the numerical analysis of equation (18) for the fluctuating velocity

gradients.

A viable analysis of the modified restricted Euler equation hinges on the use of a quantity that

does not diverge in finite time, yet contains all of the important information about the geometry

of the fluctuating velocity gradient tensor. The normalized fluctuating velocity gradient tensor bij,

defined as

bij = a/j (22)

where E = arnnamn, contains all of the geometrical information about the fluctuating velocity

gradient tensor and, by definition, is bounded in magnitude (-1 _< bij _< 1). The evolution equation

for bij is easily obtained from equation (18):

dbij
= - v_[bik bkj - 16ij btk b_t - bij btmbmn btn] (23)dt

--[bik]kj -4-]ikbkj -- 3 _iJb_qp -bij(bpqbpr-'Arq A- _pqbcrbpr)].

This equation highlights some important aspects of the behavior of the velocity gradients in homo-

geneous turbulence. For fluid particles of high dissipation, characterized by

>> 7[ijT[ij, (24)



the first term on the right-hand-side (RHS) of equation (23) is the dominant one. This term is

oblivious to the mean velocity gradients and is present in isotropic as well as anisotropic turbulent

flows. As a result, in regions of high dissipation, we can expect a certain degree of universality in

the behavior of the fluctuating velocity gradients. In fluid particles of low dissipation,

<< AijAij, (25)

so that the second term on the RHS of equation (23) is more important. The mean velocity gradient

imprints its signature on the fluctuating velocity gradients through this term. Hence, in areas of

low dissipation, we expect the fluctuating velocity-gradient behavior to be different for different

types of homogeneous mean flows.

Equation (23) is not yet suitable for numerical computations due to the presence of V_ (which

diverges in finite time) in the numerator of the first term on the right-hand-side. To make this

equation more amenable to numerical computations, the evolution of bij is considered in normalized

time:
1

dt' = --dtr' (where V -- _) (26)

The quantity r is the time scale inherent to a fluid particle. In areas of high dissipation, the time

scale is small and vice-versa. The equation for bij in normalized time is given by

1 b -
db_---AJdt'= -[b_kbkj - -_Sij tkbk! bijbtmbmnbtn] (27)

-- 2 --

--T[bik-Akj -b Aikbkj - 5_ijbpqAqp - bij(bpqbpr-hrq + A--pqbqrbpr)].

If A---_j= 0 (as in the original restricted Euler equation), equation (27) can be solved in normalized

time without any knowledge of v. When the mean velocity field is non-trivial, r needs to be known

to solve equation (23). The evolution of the time scale in normalized time is given by

dr
dt--7 = rbijbjkbik + v2[bij-Ajkbik +-Aijbjkbik]. (28)

Equations (27) and (28) are well suited for numerical computations even if the unnormalized velocity

gradients diverge in finite time.

4 Results and Discussion

In this Section, we will solve equations (27) and (28) numerically for isotropic and anisotropic

homogeneous turbulent flows. We will show that the behavior of important fluctuating velocity

gradient tensor invariants in the anisotropic cases are different from the isotropic case, highlighting

the importance of the new terms in the modified restricted Euler equation. The anisotropy of the

fluctuating velocity gradient tensor induced by the anisotropic mean flow will also be investigated.

The modified restricted Euler equation appears to capture some known anisotropic behavior in



rapidlydistortedflows,aswewill soondemonstrate.Thevelocitygradienttensorinvariantsselected

for considerationare (Cantwell[4], [5])

1 1
Q =-_aijaji and R=---_aijajkaki. (29)

Cantwell [4] proves that the invariant Q0 defined as

= _R2(t) + Q3(t) (30)Q (t)

is constant in the case of the original restricted Euler equation. From the above definition, it is

clear that Q0 is the value of Q when R = 0.

While isotropic turbulence lends itself easily to analysis, it is of limited practical value. It is

usually more reasonable to simplify flows of practical interest to more general anisotropic homo-

geneous turbulent flows. Comparisons of the modified restricted Euler equation with anisotropic

turbulence DNS data would be quite useful. However, such a comparison is deferred to a more

detailed future study. In this work we restrict our attention to another equally interesting question:

how does the presence of mean velocity gradients alter the behavior of the fluctuating velocity gra-

dients as predicted by the modified restricted Euler equation? There is evidence from DNS that

the mean velocity gradient tensor has a significant effect on the fluctuating velocity gradient tensor.

For example, Erlebacher and Sarkar [6] show that the fluctuating strain-rate eigenvectors exhibit

preferential orientation with respect to the reference coordinates in their DNS of homogeneously

sheared turbulence whereas in isotropic turbulence the eigenvectors have no preferential orienta-

tion. The original restricted Euler equation is oblivious to the mean velocity gradient field and

hence is not generally capable of capturing this preferential orientation. The modified restricted

Euler equation, on the other hand, is more sensitive to the mean velocity gradient field and, thus,

has the capability of capturing this behavior. We will study the directional preference of the veloc-

ity gradient fluctuations by investigating the behavior of the anisotropic structure tensor function

1

Fij = bkibkj - -_ij,

defined as

and the anisotropic dissipation rate tensor defined as

1

Gij --=-bikbjk - _Sij.

(31)

(32)

(It should be noted that in viscous flows, the anisotropic dissipation rate tensor, as a result of

being normalized, has no explicit dependence on viscosity.) In isotropic turbulence, the compo-

nents of these tensors are all zero. The magnitudes and signs of the non-zero components should

therefore convey a good description of the anisotropic structure of the fluctuating velocity gradient

tensor. Also to be investigated is the the behavior of the invariants Q and R and their normalized

counterparts q and r in anisotropic flows.



The resultspresentedbelowareobtainedasfollows. An ensembleof 4096fluid particlesare
considered.Theinitial velocitygradientvaluesfor eachparticleareassignedfrom a DNSvelocity

gradientfield for isotropicturbulence(Yeung[7]). The initial velocitygradientfield is normalized
with the Kolmogorovlengthscalesothat

e(O) -- aijaif(O) = 1. (33)

The time evolution of the velocity gradients for each particle is obtained numerically by integrating

equations (27) and (28) using a predictor-corrector Runge-Kutta scheme. Physically, this is equiv-

alent to suddenly subjecting an initially isotropic turbulence velocity gradient field to non-zero

mean velocity gradients. With time, the fluctuating velocity gradients increase in magnitude. The

components of the two anisotropic tensors of interest are calculated by ensemble averaging over all

fluid particles.

The three types of mean velocity gradients used in the calculations are:

Aii = S_il_j2 (homogeneous shear); (34)

],j = r ,l ,l - r ,2 j2 (planestrain); (35)

Aij = w_,16j2 - _Si2_fjl (solid body rotation). (36)

We assign the values of S = F = w = 10. For each of the anisotropic cases, the ratio of the mean

strain rate to the initial fluctuating strain rate is given by

Sv(O) = Fr(0) = wr(0) = 10, (37)

indicating that the flow is subjected to a somewhat rapid distortion. The implication is that, in

equation (27), the terms involving the mean velocity gradients are initially dominant. With the

passage of time, the strain ratio gets smaller and the non-linear terms in the fluctuating velocity

gradient become more important.

Behavior of the invariants Q and R. We compare the time evolution of the invariants Q and

R following a sample fluid particle in the four cases. In each case, we calculate the time evolution

of the two invariants starting from the same randomly chosen initial condition. The four resulting

trajectories in the Q - R phase space are p1:ovided in Figure 1. Since the initial velocity gradient

tensor is identical in all of the four cases, the starting point of all the trajectories is the same.

In the isotropic case, the trajectory is similar to that obtained in Cantwell [4], as it should be.

The value of R increases monotonically at all times. The Q value shows an initial increase, but

at large times it decreases monotonically. The trajectory of the homogeneous shear flow case is

qualitatively similar. It is distinctly different in the early times, but asymptotes to the isotropic

trajectory at later times. The plane-strain trajectory is quite different. The values of both Q

_1 II:



and R increase monotonically. The trajectory of the rotating case is even more interesting. The

trajectory loops around several times in the Q- R phase space and no monotonic trend is observed

initially. In the absence of any analytical solution of the velocity gradient equation (as in Cantwell

[4]), we cannot make any precise statements about the effect of the mean velocity gradient on the

invariants. However, one inference that can be drawn from the sample trajectories shown in Figure

1 is that the modified restricted Euler equation leads to very different behaviors of the invariants for

different mean velocity gradients. The deviation from isotropic behavior is highest initially when

the magnitudes of the velocity gradients are low - which in Eulerian coordinates would translate

to regions of low dissipation. This suggests that the deviation from isotropic behavior observed in

the low dissipation regions of the wake flow considered by Cantwell [5] could, perhaps, be due to

the effect of the mean velocity gradients rather than due to the anisotropic part of the pressure

Hessian or the viscous terms.

Behavior of Fij. In order to understand the preferential orientation of the velocity gradient tensor

with respect to the reference coordinates, we examine the behavior of the diagonal components of

the anisotropic structure tensor function Fij. Since the velocity gradients are initially isotropic, the

components of Fij are initially zero for all three anisotropic cases.

In the homogeneous shear flow case (Figure 2a), the spanwise component of the anisotropic

structure tensor (F33) is nearly unaffected by the shear (in the 1,2-plane). The streamwise-

component (Fll) decreases from zero, rapidly in the beginning, and, at later times, asymptotes

to a value of approximately -0.2. This indicates that the fluctuating velocity gradients in the

streamwise direction are milder than in the other directions, and, hence, the length scale in this

direction is likely to be larger. The cross-stream component (F_2) increases rapidly at first and,

then, asymptotes to a positive value of approximately 0.2. This implies that the velocity field

length scale is smallest in the cross-stream direction.

In the plane strain case (Figure 3a), the gradients in the extensive mean flow direction seem to

smooth out very rapidly initially leading to Fll becoming negative. After reaching its minimum

value of about -0.25, Ell increases somewhat, asymptoting to a value close to -0.15. The spanwise

component (F33) is somewhat affected. It peaks at a value of about 0.08 and asymptotes to a slightly

lower value. The component in the compressive mean flow direction (F22) increases very rapidly in

the beginning. This indicates that the effect of mean flow compression is to steepen the fluctuating.

velocity gradients. After peaking at a value close to 0.2, F22 then decreases gradually.

Rapid solid body rotation of an initially isotropic velocity field does not appear to affect the

isotropy of the structure tensor function immediately (Figure 4a). Notice that all three components

stay close to zero initially for a short duration. This behavior is consistent with the observations

of Speziale, Mansour and Rogallo [8] in their numerical study of the evolution of an initially



isotropicvelocityfield subjectedto a rapid solidbody rotation. They found that rapid rotation

producesinertialwavesthat survivefor severaleddyturnovertimesleavingthe velocityfield with
approximatelyisotropicone-pointstatistics. Oncetheseinertial wavesaredamped,anisotropy
due to meanrotation canset in. At later times,the axial component,F33, starts to decrease (in

comparison with Fll and F22) gradually and monotonically. This could indicate that the gradients

in the axial direction are getting smaller and smaller consistent with the Taylor-Proudman theorem,

which states that, at infinite rotation rates, the gradients in the axial direction should go to zero.

The components Ell and F22 display identical behavior, implying that the velocity gradients are

statistically symmetric in the plane of rotation.

It should be cautioned that the behavior of the structure tensor function depicted here is likely

to be very close to physical reality only for early times. At later times, when the fluctuating velocity

gradients get very large, the neglected hij terms are likely to play key a role, which, can perhaps,

cause the behavior of Fij to deviate from that described above.

Behavior of Gij. Often in turbulence modeling, the dissipation is taken to be isotropic. In

anisotropic flows, the degree of departure of the dissipation tensor from isotropy is not well un-

derstood. Here, we examine the anisotropic part the dissipation tensor, Gij, calculated from the

modified restricted Euler equation. We again present results for only the diagonal components for

the sake of brevity.

For the case of homogeneous shear flow (Figure 2b), Gll increases monotonically. The growth

is rapid at first, and Gll ultimately asymptotes to a value close to 0.18. This implies that the

velocity fluctuations in the streamwise direction are dissipated more rapidly than those in the

other directions. The spanwise component, G33, remains nearly unaffected. The cross-stream

component, G22, decreases monotonically to offset the increase in Gll. An interesting point to note

is that the behavior of Gij is exactly opposite to that of Fij.

In the plane strain case (Figure 3b), the components of Gij and Fij have identical evolutions.

The dissipation in the extensive direction is substantially lower than in the compressive and spanwise

directions. On the other hand, solid body rotation suppresses dissipation in the axial direction

(Figure 4b). The dissipation along both directions in the plane of the rotation exhibit identical

behavior at higher dissipation levels.

The above figures clearly indicate that the dissipation tensor is quite anisotropic when the mean

flow gradients are strong. Although the results shown here may not be completely valid at later

times, they are quite credible for short elapsed times where the rapid distortion limit formally

applies.

10

1 Ill



5 Conclusion

In this paper, we have clearly demonstrated that the original restricted Euler equation is not

consistent with the balance of mean momentum for most homogeneous turbulent flows with non-zero

mean velocity gradients. An alternate model for the fluctuating velocity gradients in homogeneous

turbulent flows - which we refer to as the modified restricted Euler equation - was developed in

equations (16) and (18). The new model was derived by making a simplification that is similar

in spirit to the one made in the original restricted Euler equation (Vieillefosse [2]) -- this time

applied to the fluctuating pressure field instead. Unlike the original restricted Euler model, the

modified model for the total velocity gradient is sensitive to the type of the mean velocity gradients

to which the flow is subjected. Analytical solutions, of the type obtained by Cantwell [4] for the

original restricted Euler equation, were not attempted due to theadditional complexity introduced

by the new terms in the modified equation. The modified equation, like the original restricted

Euler equation, leads to a singularity (i.e., divergence) of the fluctuating velocity gradients in finite

time. A strategy for capturing the geometry of the fluctuating velocity gradient tensor during this

divergence was developed in equations (27) and (28). Calculations performed using the modified

restricted Euler equation reveal important differences between the fluctuating velocity gradients in

isotropic and anisotropic turbulence. Some known anisotropic features of the fluctuating velocity

gradients (including a possible Taylor-Proudman reorganization in flows with a strong solid body

rotation) appear to be captured by the new model. These results for anisotropic homogeneous

turbulence, combined with the previously demonstrated ability of the original restricted Euler

equation to capture many of the features of isotropic turbulence, leads us to believe that the new

modified restricted Euler equation can serve as a valuable dynamical model for the analysis of the

geometry of the velocity gradient tensor in homogeneous turbulent flows.

11
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FIG. 3 o: Anisotropy of Structure Function
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